New sub-project available at WCG: Cancer
Description:
http://www.worldcommunitygrid.org/projects_showcase/viewHdcResearch.do
Scientists:
http://www.worldcommunitygrid.org/projects_showcase/viewHdcPart.do
FAQ:
http://www.worldcommunitygrid.org/projects_showcase/viewHdcFaq.do?shortName=hdc
World Community Grid and Tissue Microarrays
Currently, the primary methods used to evaluate tissue microarrays involve manual, interactive review of samples during which they are subjectively evaluated and scored. An alternate, but less utilized strategy is to sequentially digitize specimens for subsequent semi-quantitative assessment. Both procedures ultimately involve the interactive evaluation of TMA samples, which is a slow, tedious process that is prone to human error. Much of the difficulty in rendering consistent evaluation of expression patterns in cancer tissue microarrays is due to subjective impressions of observers.
IBM's World Community Grid will enable the most computationally expensive components of the software to run at optimal speed, thereby increasing the accuracy and sensitivity with which expression calculations and pattern recognition procedures can be conducted. By harnessing the collective computational power of World Community Grid, researchers will be able to analyze a larger set of cancer tissue specimens and conduct experiments using a much broader ensemble of biomarkers and stains than is possible using traditional computer resources.
To date, only a fraction of the known biomarkers have been examined. The long-term goal is to create a library of biomarkers and their expression patterns so that, in the future, physicians can consult the library to help them in rendering diagnoses and providing the most effective treatment for patients with cancer.
In the absence of World Community Grid, TMA's are processed in individual or small batches. Using World Community Grid, analysis can be carried out for hundreds of arrays in parallel, allowing multiple experiments to be conducted simultaneously. This added level of speed and sophistication could potentially enable investigators to detect and track subtle changes in measurable parameters, thereby facilitating discovery of prognostic clues, which are not apparent by human inspection or traditional analysis alone and could advance the fields of cancer biology, drug discovery and therapy planning.
Grüße vom Sänger
